资源类型

期刊论文 2550

会议视频 58

年份

2024 136

2023 215

2022 259

2021 219

2020 167

2019 160

2018 130

2017 130

2016 108

2015 129

2014 96

2013 81

2012 86

2011 77

2010 90

2009 83

2008 80

2007 97

2006 60

2005 42

展开 ︾

关键词

水资源 18

可持续发展 14

细水雾 14

优化 10

遗传算法 9

环境 7

神经网络 7

水环境 6

泥水盾构 6

医学 5

反渗透 5

工程管理 5

数值模拟 5

能源 5

创新 4

城镇建设 4

增材制造 4

多目标优化 4

机器学习 4

展开 ︾

检索范围:

排序: 展示方式:

Temporal dimension and water quality control in an emission trading scheme based on water environmental

Zhaoxing HAN, Zhenyao SHEN, Yongwei GONG, Qian HONG

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 119-129 doi: 10.1007/s11783-011-0272-z

摘要: Emission trading is one of the most effective alternatives to controlling water pollution. Water environmental functional zone (WEFZ) is used to determine the water quality standard and identify the zone boundary for each river or reach. In this study, a new emission trading scheme was addressed based on WEFZ, accounting for both the temporal dimension and water quality control. A temporal factor of emission trading was proposed based on variations in the environmental capacity within a year by dividing the year into three periods, including high, normal, and low periods of environmental capacity. During each period, emission trading was implemented exclusively. A water quality-control scheme was suggested based on the water quality requirement in the water functional zone, in which the water quality at the downstream boundary of the zone was required to meet the water standard following auto-purification in the stream. Two methods of calculating water quality control are addressed for point-source pollution and non-point-source pollution. The calculated temporal dimension and water quality control were located in Dongxi River of the Daning Watershed in the Three Gorges Watershed. The high period was during June, July, and August, the normal period was during April, May, September, and October, and the low period was during January, February, March, November, and December. The results from the water quality calculation demonstrated that the discharge of point-source and non-point-source pollutions led to an excess of common contaminants at the downstream boundary of WEFZ. The temporal and spatial factors above should be incorporated into the emission trading scheme based on WEFZ.

关键词: emission trading     water functional zone     water quality control    

Deep learning based water leakage detection for shield tunnel lining

《结构与土木工程前沿(英文)》 2024年 第18卷 第6期   页码 887-898 doi: 10.1007/s11709-024-1071-5

摘要: Shield tunnel lining is prone to water leakage, which may further bring about corrosion and structural damage to the walls, potentially leading to dangerous accidents. To avoid tedious and inefficient manual inspection, many projects use artificial intelligence (AI) to detect cracks and water leakage. A novel method for water leakage inspection in shield tunnel lining that utilizes deep learning is introduced in this paper. Our proposal includes a ConvNeXt-S backbone, deconvolutional-feature pyramid network (D-FPN), spatial attention module (SPAM). and a detection head. It can extract representative features of leaking areas to aid inspection processes. To further improve the model’s robustness, we innovatively use an inversed low-light enhancement method to convert normally illuminated images to low light ones and introduce them into the training samples. Validation experiments are performed, achieving the average precision (AP) score of 56.8%, which outperforms previous work by a margin of 5.7%. Visualization illustrations also support our method’s practical effectiveness.

关键词: water leakage detection     deep learning     deconvolutional-feature pyramid     spatial attention    

PV based water pumping system for agricultural irrigation

T A BINSHAD,K VIJAYAKUMAR,M KALEESWARI

《能源前沿(英文)》 2016年 第10卷 第3期   页码 319-328 doi: 10.1007/s11708-016-0409-7

摘要: This paper investigates the operation and analysis of the photovoltaic water pumping system in detail. Power electronic controllers were designed and developed for the water pumping system using a boost converter along with an inverter followed by an induction motor pump set. The proposed system could be employed in agricultural irrigation under any operating condition of varying natures of solar irradiances and temperatures. The configuration and implementation of the system were described in detail. Further, the detailed method of analysis and simulation characteristics of such PV water pumping system was also presented. With the concern of shortage of fossil fuel, global warming and energy security, the proposed PV based water pumping system can meet the significant demand of electricity and serve for the agricultural sector.

关键词: photovoltaic water pumping system     power electronic controller     solar irradiances and temperature    

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

《能源前沿(英文)》 doi: 10.1007/s11708-024-0933-11

摘要: Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO2 nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO2 nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO2 nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.

关键词: full-spectrum solar energy     photovoltaic/thermal (PV/T) system     water-based nanofluid     system efficiency    

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

《能源前沿(英文)》 doi: 10.1007/s11708-024-0935-7

摘要: Spectral beam split is attracting more attention thanks to the efficient use of whole spectrum solar energy and the cogenerative supply for electricity and heat. Nanofluids can selectively absorb and deliver specific solar spectra, making various nanofluids ideal for potential use in hybrid photovoltaic/thermal (PV/T) systems for solar spectrum separation. Clarifying the effects of design parameters is extremely beneficial for optimal frequency divider design and system performance enhancement. The water-based SiO2 nanofluid with excellent thermal and absorption properties was proposed as the spectral beam splitter in the present study, to improve the efficiency of a hybrid PV/T system. Moreover, a dual optical path method was applied to get its spectral transimissivity and analyze the impact of its concentration and optical path on its optical properties. Furthermore, a PV and photothermal model of the presented system was built to investigate the system performance. The result indicates that the transimissivity of the nanofluids to solar radiation gradually decreases with increasing SiO2 nanofluid concentration and optical path. The higher nanofluid concentration leads to a lower electrical conversion efficiency, a higher thermal conversion efficiency, and an overall system efficiency. Considering the overall efficiency and economic cost, the optimal SiO2 nanofluid concentration is 0.10 wt.% (wt.%, mass fraction). Increasing the optical path (from 0 to 30 mm) results in a 60.43% reduction in electrical conversion efficiency and a 50.84% increase in overall system efficiency. However, the overall system efficiency rises sharply as the optical path increases in the 0–10 mm range, and then slowly at the optical path of 10–30 mm. Additionally, the overall system efficiency increases first and then drops upon increasing the focusing ratio. The maximum efficiency is 51.93% at the focusing ratio of 3.

关键词: full-spectrum solar energy     photovoltaic/thermal (PV/T) system     water-based nanofluid     system efficiency    

A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1688-y

摘要:

● A novel VMD-IGOA-LSTM model has proposed for the prediction of water quality.

关键词: Water quality prediction     Grasshopper optimization algorithm     Variational mode decomposition     Long short-term memory neural network    

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing LUO, Yuxin ZHAO, Dengwei JING

《能源前沿(英文)》 2021年 第15卷 第1期   页码 600-620 doi: 10.1007/s11708-021-0737-0

摘要: Converting solar energy into hydrogen (H ) by photocatalytic water splitting is a promising approach to simultaneously address the increasing energy demand and environmental issues. Half decade has passed since the discovery of photo-induced water splitting phenomenon on TiO photoanode, while the solar to H efficiency is still around 1%, far below the least industrial requirement. Therefore, developing efficient photocatalyst with a high energy conversion efficiency is still one of the main tasks to be overcome. Graphitic carbon nitride (g-C N ) is just such an emerging and potential semiconductor. Therefore, in this review, the state-of-the-art advances in g-C N based photocatalysts for overall water splitting were summarized in three sections according to the strategies used, and future challenges and new directions were discussed.

关键词: photocatalysis     overall water splitting     carbon nitride     hydrogen    

A cellphone-based colorimetric multi-channel sensor for water environmental monitoring

《环境科学与工程前沿(英文)》 2022年 第16卷 第12期 doi: 10.1007/s11783-022-1590-z

摘要:

● A cellphone-based colorimetric multi-channel sensor for in-field detection.

关键词: Colorimetric analysis     Multi-channel sensor     Cellphone     Water quality indexes     Environmental monitoring    

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 838-854 doi: 10.1007/s11705-018-1746-3

摘要: Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

关键词: water splitting     structure engineering     metal organic framework     ion exchange     synergistic effect     hybrid structure     conductive supports    

Efficient Identification of water conveyance tunnels siltation based on ensemble deep learning

Xinbin WU; Junjie LI; Linlin WANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第5期   页码 564-575 doi: 10.1007/s11709-022-0829-x

摘要: The inspection of water conveyance tunnels plays an important role in water diversion projects. Siltation is an essential factor threatening the safety of water conveyance tunnels. Accurate and efficient identification of such siltation can reduce risks and enhance safety and reliability of these projects. The remotely operated vehicle (ROV) can detect such siltation. However, it needs to improve its intelligent recognition of image data it obtains. This paper introduces the idea of ensemble deep learning. Based on the VGG16 network, a compact convolutional neural network (CNN) is designed as a primary learner, called Silt-net, which is used to identify the siltation images. At the same time, the fully-connected network is applied as the meta-learner, and stacking ensemble learning is combined with the outputs of the primary classifiers to obtain satisfactory classification results. Finally, several evaluation metrics are used to measure the performance of the proposed method. The experimental results on the siltation dataset show that the classification accuracy of the proposed method reaches 97.2%, which is far better than the accuracy of other classifiers. Furthermore, the proposed method can weigh the accuracy and model complexity on a platform with limited computing resources.

关键词: water conveyance tunnels     siltation images     remotely operated vehicles     deep learning     ensemble learning     computer vision    

Ecological compensation based on willingness to accept for conservation of drinking water sources

Linyu XU,Bing YU,Yang LI

《环境科学与工程前沿(英文)》 2015年 第9卷 第1期   页码 58-65 doi: 10.1007/s11783-014-0688-3

摘要: Ecological compensation is a powerful environmental economic tool for environmental protection in areas where drinking water sources are located. We established an ecological compensation accounting system based on respondents’ willingness to accept (WTA). In this system, stakeholder preferences and the factors that influence them can be gauged effectively using logit and tobit models. We applied this accounting system to ecological compensation for the Miyun Reservoir, Beijing, China. The average WTA value for Miyun Reservoir residents was approximately 1186 CNY per family in 2012, which could be set as a suitable compensation standard, since it is slightly higher than the local protection cost. Thus, the annual total ecological compensation could be 58.73 million CNY. Distance from the reservoir, job types, and attitude to environmental protection were variables with significant effects on WTA. In addition, trends for individual preferences were identified via an analysis of key influential factors. The results suggest some useful information for establishing ecological compensation mechanisms for conservation of drinking water sources. Suggestions include popularizing the concept and meaning of ecological compensation among residents, setting different compensation levels based on distance from the reservoir, considering the requirements of farmers, and taking various in-kind and out-of-kind compensation approaches.

关键词: contingent valuation method     questionnaire survey     Miyun Reservoir    

Solar evaporation for simultaneous oil-water separation and electricity generation with wood-based absorbers

《环境科学与工程前沿(英文)》 2024年 第18卷 第2期 doi: 10.1007/s11783-024-1775-8

摘要:

● A protocol is proposed for simultaneous oil/water separation and electricity generation.

关键词: Oily wastewater     Carbonized wood     Salinity gradient     Electricity generation     Solar irradiation    

An evaluation model of water-saving reconstruction projects based on resource value flows

Runwen JIANG, Xiaohong CHEN, Lingchu ZHAO, Zhifang ZHOU, Tao ZHANG

《工程管理前沿(英文)》 2022年 第9卷 第2期   页码 257-267 doi: 10.1007/s42524-020-0144-y

摘要: Due to uncertainties in water supply, there is growing demand for water resource management in enterprises. In this study, we evaluated the effects of companies’ water-saving reconstruction projects. We used Hina Advanced Materials Company as a case to construct an investment decision model to (1) calculate the internal and external costs of water resources based on circular economic value analysis theory, and (2) locate the level of water resources circulation. We adopted gray situation decision analysis to identify the typical problems that occur in water resource utilization. Moreover, we demonstrated optimization plans for different potential improvements, thereby providing guidance and references for water resource cost management and the comprehensive optimization of environmental benefits. We concluded that the circulation economic value analysis model can effectively display the flow and amount of value derived from water resource flows, thereby providing guidance and suggestions for optimizing water resource flows.

关键词: value flow analysis     ternary materials enterprises     grey situation decision analysis     water resources    

MPC-based interval number optimization for electric water heater scheduling in uncertain environments

Jidong WANG, Chenghao LI, Peng LI, Yanbo CHE, Yue ZHOU, Yinqi LI

《能源前沿(英文)》 2021年 第15卷 第1期   页码 186-200 doi: 10.1007/s11708-019-0644-9

摘要: In this paper, interval number optimization and model predictive control are proposed to handle the uncertain-but-bounded parameters in electric water heater load scheduling. First of all, interval numbers are used to describe uncertain parameters including hot water demand, ambient temperature, and real-time price of electricity. Moreover, the traditional thermal dynamic model of electric water heater is transformed into an interval number model, based on which, the day-ahead load scheduling problem with uncertain parameters is formulated, and solved by interval number optimization. Different tolerance degrees for constraint violation and temperature preferences are also discussed for giving consumers more choices. Furthermore, the model predictive control which incorporates both forecasts and newly updated information is utilized to make and execute electric water heater load schedules on a rolling basis throughout the day. Simulation results demonstrate that interval number optimization either in day-ahead optimization or model predictive control format is robust to the uncertain hot water demand, ambient temperature, and real-time price of electricity, enabling customers to flexibly adjust electric water heater control strategy.

关键词: electric water heater     load scheduling     interval number optimization     model predictive control     uncertainty    

Utilization threshold of surface water and groundwater based on the system optimization of crop planting

Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

《农业科学与工程前沿(英文)》 2016年 第3卷 第3期   页码 231-240 doi: 10.15302/J-FASE-2016101

摘要: Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%–45.45% and the exploitation utilization of groundwater is in 54.82%–66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%–48.04% and the groundwater exploitation threshold is in 67.07%–72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

关键词: economic-social-ecological     uncertainty     harmonious entropy     surface water and groundwater     utilization threshold    

标题 作者 时间 类型 操作

Temporal dimension and water quality control in an emission trading scheme based on water environmental

Zhaoxing HAN, Zhenyao SHEN, Yongwei GONG, Qian HONG

期刊论文

Deep learning based water leakage detection for shield tunnel lining

期刊论文

PV based water pumping system for agricultural irrigation

T A BINSHAD,K VIJAYAKUMAR,M KALEESWARI

期刊论文

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

期刊论文

Advancing performance assessment of a spectral beam splitting hybrid PV/T system with water-based SiO

期刊论文

A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM

期刊论文

State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts

Bing LUO, Yuxin ZHAO, Dengwei JING

期刊论文

A cellphone-based colorimetric multi-channel sensor for water environmental monitoring

期刊论文

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

期刊论文

Efficient Identification of water conveyance tunnels siltation based on ensemble deep learning

Xinbin WU; Junjie LI; Linlin WANG

期刊论文

Ecological compensation based on willingness to accept for conservation of drinking water sources

Linyu XU,Bing YU,Yang LI

期刊论文

Solar evaporation for simultaneous oil-water separation and electricity generation with wood-based absorbers

期刊论文

An evaluation model of water-saving reconstruction projects based on resource value flows

Runwen JIANG, Xiaohong CHEN, Lingchu ZHAO, Zhifang ZHOU, Tao ZHANG

期刊论文

MPC-based interval number optimization for electric water heater scheduling in uncertain environments

Jidong WANG, Chenghao LI, Peng LI, Yanbo CHE, Yue ZHOU, Yinqi LI

期刊论文

Utilization threshold of surface water and groundwater based on the system optimization of crop planting

Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

期刊论文